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Abstract. A geometric programme to analyse the structure of Lie algebras is presented with 
special emphasis on the geomeuy of linear Poisson tensors. The notion of decomposable 
Poisson tensors is intzoduced and an algorithm to construct all solvable Lie algebras is presented. 
Poisson-Liouville structures ate also introduced to discuss a new class of Lie algebras which 
include, as a subclass, semi-simple Lie algebras. A decomposition theorem for Poisson tensors 
is proved for a class of Poisson manifolds including linear ones. Simple Lie algebras are also 
discussed from this viewpoint and lowerdimensional real Lie algebras are analysed. 

1. Introduction 

The idea of using linear Poisson brackets to understand the structure of Lie algebras can 
be traced back to the work of Lie Li881. In this spirit there have been some suggestions 
of pursuing this geometric approach for Lie algebra structures, as in Weinstein's study of 
Poisson manifolds, as a geometrization of Lie algebras We831. More recently, a new 
approach to the classification of Poisson brackets in low dimensions has been presented in 
[Gr93, Li921. The main idea in this approach consists in exploiting the geometrical content 
of the linear Poisson bi-vector defined by the Lie algebra bracket using a volume element 
and associating to each Poisson tensor a (n - 2)-form, n being the dimension of the Lie 
algebra. 

In this paper we will continue this line of thought but the emphasis will again be to 
use the broader frame provided by the geometry of Poisson brackets to think back on the 
structure of finite-dimensional Lie algebras. That is, either passing to forms using a volume 
element or, analysing directly the properties of the bi-vector defining the Poisson brackets; 
in this paper we will make a systematic geomehic approach to Lie algebras and we discuss, 
among other results, a new algorithm that allows us to conshuct all solvable Lie algebras. 
This algorithm can also be specialized to build up all nil-potent Lie algebras and provides 
an alternative approach to previous results and classification techniques [Tu88, Nd941. It is 
also shown that all solvable Lie algebras are decomposable in the sense that their Poisson bi- 
vector is the sum of compatible Poisson tensors. This notion of decomposability is analysed 
further in the realm of Poisson-Liouville geometry and a decomposition theorem for the 
Poisson tensor defined by a Lie algebra structure, is presented. This result puts in evidence 
a class of Lie algebras which are compatible with a volume form and are called Poisson- 
Liouville structures. This class includes semi-simple Lie algebras and traceless solvable 
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Lie algebras. This result also extends a previous decomposition obtained by Liu and Xu 
for quadratic brackets on vector spaces Li92]. Simple Lie algebras are discussed from 
this geometrical viewpoint introducing further gegmetrical structures, mainly an invariant 
metric. 

The paper will be organized as follows. Section.2 will be devoted to fix the notation 
and introduce some general facts on the geometry of linear Poisson tensors as weU as the 
notion of decomposition of a Poisson tensor. Extensions of Poisson tensors are briefly 
discussed in section 3 as well' as the algebra of derivations where the notion of parallel 
derivations are introduced. These ideas are used to build up an algorithm which provides 
a complete list of solvable Lie algebras in section 4. The structure of the algorithm allows 
for an immedrate classification of particular subfamilies of solvable Lie algebras. Poisson- 
Liouville structures are discussed in section 5. A decomposition theorem is discussed 
and linear Poisson sfructures are shown to be decomposable. Finally in section 6, semi- 
simple Lie algebras are discussed from the geometrical point of view and in section 7 
(ow-dimensional real Lie algebras up to dimension 4 are analysed as an example of the use 
of the ideas and techniques discussed in the paper. 

J F Cariiiena et a1 

2. The Geometry of Lie algebras and Poisson manifolds 

A real finite-dimensional Lie algebra L with Lie bracket [., .], defines in a natural way a 
Poisson structure I., . }L  on the dual space L' of L.  The natural identification L (L*)*, 
allows one to think of L as a subset of the ring of smooth functions Cm(L*).  Choosing a 
linear basis (Ei];=, of L, and identifying them with linear coordinate functions xi on L" 
by means of x i ( x )  = ( x ,  Ei) for all x E L', we will define the fundamental commutation 
relations on L" by the expression 

(1) 

where [Ei, E j ]  = ci jkEk,  and cij denote the structure constants of the algebra. Intrinsically, 
the Poisson bracket (., .}L can be defined on Cm(L*) as follows: 

k 
(X i ,X j IL  =cl, XX 

( f , g I ~ ( x )  = ( x ,  Idf(x),dg(x)l) (2) 

where f, g E C"(L*) and x E L'. The Poisson bracket I., ,]L is commonly called a 
Lie-Poisson bracket and it is associated to a bi-vector field AL on L* written in linear 
coordinates xi as 

or, intrinsically, 

h ( d f  A dg) = If, ~ I L .  
The Jacobi identity for the Poisson bracket (., .)L is equivalent to the vanishing of the 
Schouten bracket [Li77, Tu74, Sc53, Ni551, of AL with itself 

[AL,  ALI = 0. (4) 

The Schouten bracket [., .I is the unique extension of the Lie bracket of vector fields to the 
exterior algebra of multivector fields, making it into a graded Lie algebra (the grading in 
this algebra is given by the ordinary degree as multivectors minus one). Given a multivector 
V, the linear operator [V, defines a derivation on the exterior algebra of multivector fields 
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on L', whose degree is the ordinary degree of V .  If V = X A Y is a monomial bi-vector, 
then 

[v, v] = 2x A Y A [x. Y ]  . (5) 

Xe = - h ~ ( 0 )  (6) 
For any given closed 1-form 0 on L*, there is an associated vector field 

which is an infinitesimal automorphism of AL, i.e. 
C X ~ A L  = 0 

and because of that, they will be called (locally) Poisson in what follows. If 0 = d f, the 
vector field X, = -A(df) will be called a Poisson vector field with generating function 
f .  Notice that Poisson vector fields are commonly called Hamiltonian vector fields but the 
change in the terminology used in this paper will be justified by the notions discussed in 
section 5. It is clear that 

E,, X,I = Xlf.8t. (7) 
This is proved easily using that Cx,g = { f, g } L  and Lx, AL = 0. The Poisson vector fields 
X; corresponding to the linear coordinate functions xi,  have the expression 

and the Poisson bi-vector can be written as 
a 

ax; 
A' = X ;  A - .  

Notice that this way of writing AL is, of course, not unique. 
The linear space L* carries an action of GZ(L) (the adjoint of the fundamental 

representation of the group). Identifying the Lie algebraEnd(L) of the automorphism group 
GI(L) with the algebra g[(n. R) of n x n  matrices, this action will define a linear represention 
of g [ ( n ,  IR) on the space of linear vector fields on L'. In fact, given A E End(L). with 
associated matrix Ai', it will have associated the linear vector field OD L* 

The Abelian group L' acts by translations on itself and the corresponding vector fields are 
given by 

a 
axi 

X, =ai- 

for any a E L'. Defining the linear operators Ci = ad(Ei), the matrix associated to it will 
be given by ( C t ) f  = c t j k ,  i = 1,. . . , n, and the Poisson bi-vector AL in (9) is written 
again as 

The vector fields XC, provide a realization of the adjoint representation of L in terms of 
vector fields on L'. 

Thus the problem of constructing and classifying Lie algebras structures can be translated 
into differential geometrical terms as the problem of determining all equivalence classes of 
bi-vectors A of the form 

A = Exa, A X ,  
k=l 
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with A& E g l (n ,  I!4) and a& E E", such that [A, A] = 0. It is important to remark here that if 
A is a Poisson tensor of the form given by (13), the monomials X A  AX. do not, in general, 
define Poisson structures by themselves, i.e. [ X A  A Xu, X A  A X,] # 0 (see lemma 2). 

Definition 1. A Poisson tensor A will be called decomposable if A = AI + A2, where 
[Ai ,  A I ]  = 0, [ A I ,  A21 = 0 and [A*, 1\21 = 0. 

In other words, the Poisson bi-vector A is decomposable if it is the sum of two 
compatible Poisson bi-vectors. Notice that if Ai define Lie algebra structures, i = 1,2, 
the Lie algebra structure A = A1 + A2 is not the sum of the corresponding Lie algebras, 
however, the Poisson bi-vectors defining the structures do add up. It is clear that the 
decomposition of a linear Poisson fensor is preserved under linear changes of coordinares. 
A Poisson tensor will be called fully decomposable if A = At where Ak are monomial 
Poisson bi-vectors compatible among themselves, i.e. [ha. A,] = 0 for all k. j .  Notice 
again that (9) does not, in general, define a decomposition of the Poisson tensor A L .  

A direct sum of Lie algebras provides an obvious example of a decomposable Poisson 
bi-vector. A decomposition of a Poisson tensor is not unique in general. The following 
example shows that decomposability of Poisson tensors is more general than the direct 
sum of Lie algebras. For instance, consider the Poisson bi-vector corresponding to the Lie 
algebra of the group S0(3), 

J F Caritiena et a1 

The Poisson bi-vectors A ,  = (xla/axz - x2a/axl) A a/ax, and A* = x3a/axl A a/axz 
define a decomposition of the simple algebra A~ocn.  Another decomposition of the same 
algebra is provided by 

where Ri are the mauices defining the adjoint representation of SO(3) .  It is also remarkable 
that decomposable Poisson structures provide examples of bi-Hamiltonian manifolds that 
play a relevant role in the study of integrable dynamical systems [Mg78]. In the following 
sections we will find several instances of decompositions of certain Poisson tensors. 

The previous construction is a particular instance of a more general situation that can 
be summarized as follows. Let P be a Poisson manifold with Poisson tensor A p ,  i.e. A p  
is a bi-vector such that [Ap, A,] = 0, and C a Lie group acting on P by infinitesimal 
automorphisms of Ap. If AG is a right-invariant Poisson tensor on G, then Ac x A p  
defines a Poisson structure on G x P which is G-invariant and then, the quotient manifold, 
(C x P ) / G  Z P ,  inherits a Poisson structure that could be denoted by AG,?. If A p  is 
chosen to be zero, then the Poisson structure on G will induce a Poisson structure on P .  
In fact if AG = Aab&, A f b ,  with a basis of right-invariant vector fields on G, then 

where ta = @/ax' represents the vector field on P defined by f a .  This construction 
has been used systematically in [A1931 to describe symplectic Lie algebras and to study 
quadratic Poisson brackets on vector spaces [Li92]. 

In the particular case of G = IGI(L*),  P = L* and the natural action of the 
inhomogeneous general linear group IGl(L')  = L*kGl(L')  on L*, there is an induced 
Poisson bracket on L' from any right-invariant Poisson bracket on JGl(L*).  Right-invariant 
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Poisson structures on ICl (L*)  could be obtained by linear combination of monomials of 
the following types: 

C A  A t 8  C A  A h  t o  A t b  

with CA denoting the generator on GI(L*) corresponding to the linear operator A on L', and 
Ca denotes the generator on L' associated to the translation by a. Again, it is worthwhile 
to point it out that the vanishing of the Schouten bracket of the induced Poisson tensor is 
automatic if the tensor A c  on the group is Poisson. 

2.1. Linear structures on Poisson manifolds 

We will not dwell on general aspects of the geometry of Poisson manifolds (see for instance 
[WeS3]). However, we will discuss briefly some aspects of the geometry of Poisson bi- 
vectors associated to Lie algebras which are enriched notably by the linear structure present 
in the underlying vector space. This geometry is captured by the Liouville vector field A 
on L'. This vector field is generated by dilations and in linear coordinates xi is written as 

The vector field A defines a derivation on the algebra of tensor fields T ( L * )  on L' by 
means of the Lie derivative. A tensor field T on L' will be said to be homogeneous of 
degree k if it is an eigenvector of CA with eigenvalue k ,  i.e. 

CAT = k T .  

The algebra of tensor fields on L" admits a grading 

T ( L * )  = @ 7 ( L * ) ( k )  
KEZ 

where 'T(L*)") denotes the space of homogeneous tensors of degree k .  This grading is 
compatible with the tensor product, hence the tensor algebra acquires a trigrading by finite- 
dimensional spaces '&'(L*)") made of p-contravariant, q-covariant, homogeneous tensors 
of degree k .  

It is clear that linear Poisson bi-vectors A L  are homogeneous of degree -1 

C A A ~ = - A L .  

Similarly, the vector fields X A  of degree 0 are homogeneous because [A ,  X A ]  = 0. On 
the contrary, the vector fields X ,  are of degree -1. Notice that the lowest degrex of 
homogeneity for a bi-vector is -2. They will correspond to constant ones, and they will 
necessarily have the form 

which is fully decomposable. 
Notice that if f, g are homogeneous functions of degree I f  I and Igl, respectively, then 

[f, g] is of degree I f 1  + Igl+ 1111. Then, if A is of degree -2, the subspace of quadratic 
functions (homogeneous of degree 2) will close a finite-dimensional subalgebra of Cm(L') 
with respect to the bracket {., .). If A' is a linear Poisson bracket, i.e. of degree -1, then 
the linear functions will close a finite-dimensional Lie subalgebra (isomorphic to L )  on the 
ring of smooth functions on L*. The Poisson tensors of the form X A  A X B  are of degree 
zero, or equivalently, they define quadratic brackets. It is easy to show that there will not 
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exist a finite-dimensional Lie subalgebra of the Lie algebra of analytic functions on L' with 
respect to the Poisson bracket defined by such a tensor. 

In the linear SiNatiOn we are discussing, and more generally. in orientable manifolds, 
we can choose a volume element on L". We will choose a constant volume element on L*, 
i.e. a homogeneous n-form Q of degree n, namely, 

J F Cariiiena et a1 

There is a one-dimensional subspace of volume forms satisfying the previous condition, all 
of them proportional. We will fix one of them, denoted by Do, in what follows. 

3. The extension problem and the derivation algebra 

The construction and classification of arbitrary Lie algebras is an open problem. The 
classification of all semi-simple Lie algebras over the fields of complex or real numbers due 
to Cartan is classical, but the classification of solvable algebras, the other main ingredient in 
the construction of arbitrary Lie algebras because of Levi's theorem, is still not completely 
understood. Such classification only exists for low dimensions. Recently, a classification 
of all complex solvable Lie algebras with an Abelian nil-radical has been found by purely 
algebraic methods [Nd94]. In this section we will discuss the extension problem for linear 
Poisson tensors and some general properties of the algebra of derivations. In the following 
section we will propose an algorithm based on a particular extension mechanism for Poisson 
bi-vector fields, which provides a complete list of solvable Lie algebras. 

3.1. Extensions of Poisson bi-vectors 

We will consider the sequence of vector spaces 0 -+ V -+ E -+ W -+ 0, i.e. W E E / V ,  
and the corresponding sequence for the dual spaces, 0 -+ W' -+ E' + V x  -+ 0. Once a 
section U of the first sequence has been chosen, both a Poisson tensor A W  and a Poisson 
tensor A V  can be pushed-forward and pulled-back to E*, respectively. In fact, the choice 
of such a section allows us to identify E* with W* x V*, and we will define a Poisson 
structure AE on E* just by taking the direct sum AE = A W  fB A V .  Notice that AE is 
decomposable because [ A V ,  Awl  =O. 

Given two Poisson manifolds (PL, AI),  ( P z ,  A*), an extension of A1 by A2 is a Poisson 
manifold ( P ,  A), an injective Poisson map i: PI --f P and a surjective Poisson map 
n: P -+ P2. If PI = W", 9 = V*, an extension of the Poisson tensor Aw by the Poisson 
tensor A V  is a Poisson tensor AE on E' such that the corresponding maps W* -+ E*, 
and E' -+ V *  are Poisson maps. If Aw, A V ,  AB are linear Poisson tensors, this notion 
corresponds to the ordinary notion of extensions of the associated Lie algebras. In fact, the 
notion of extension of Poisson tensors introduced above is equivalent to the notion of an 
extension of the Lie algebra C"(P1) by the Lie algebra Cm(Pz) of the following form: 

(14) 
(notice that the sequence above cannot be an exact sequence of Poisson algebras). If 
we restrict our attention to linear Poisson tensors, the identification of the Lie algebras 
V c C"(V*), W c C"(W*), shows that the restriction of the short exact sequence (14) 
to the finite-dimensional subalgebras V, E, W, will define an ordinary extension of Lie 
algebras. 

In particular, for a given Lie algebra L,  Levi's theorem states the existence of a short 
exact sequence 0 -+ rad(L) -+ L + L,, -+ 0, where the radical of L, rad(L), is a 

0 -+ C"(P2) + C"(P) --f C"(P,) + 0 
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maximal solvable ideal of L, and L,, is semi-simple. This result will be translated in 
geometrical terms by stating that reconstructing Lie algebra structures amounts to extended 
Poisson tensors corresponding to semi-simple Lie algebras by Poisson tensors corresponding 
to solvable Lie algebras. In the following section we will concentrate on the construction 
of solvable Lie algebras, leaving the discussion of semi-simple Lie algebras to section 6. 

The simplest non-trivial extension construction will correspond to semi-direct products. 
For this matter we will assume that there is a linear action of the Lie algebra W on V by 
derivations, i.e. there is a Lie algebra homomorphism p:  W + Der(V). Linear maps of V 
as elements in End(V) will define automatically linear vector fields on V' as discussed in 
the previous section, equation (lo), thus the image of a vector e E W by p can be identified 
with a linear vector field X p ( c )  on V'. Besides, because p ( e )  are derivations of the Lie 
algebra V, we get that the corresponding linear vector fields X,(c) will preserve the Poisson 
tensor A V .  If we select a linear basis (E,} on W ,  we will denote the linear vector field 
XP(€.) simply by Yo. We will define the extended Poisson tensor on E* by the formula 

where ya will denote the linear coordinates on W* defined by E,. Choosing a linear basis 
{ E i }  on V and xi denoting the corresponding linear coordinates on V", we can write 

where c i j p  and fobC denote the structure constants defined by the linear Poisson tensors 
A V  and A w ,  respectively, and p ( E , ) ( E i )  = d,,'Ej. The homomorphism property of the 
map p guarantees that A E  is a Poisson tensor. The Poisson tensor A E  will be called the 
semi-direct sum of A V  and Aw with respect to p. 

An interesting situation arises if V = W*,  and p is the coadjoint action of W on W * ,  
and p' is the coacjoint action of W" on W ,  we can construct the following linear tensor on 
E * = W @ W ' :  

will define a Lie algebra structure if the structure constants cij ', and f ' j k  are compatible, 
in other words, if A E  defines on E* a Lie algebra structure then ( W ,  W*) will be a Lie 
bi-algebra. If f ' j k  = 0, it is a cotangent algebra, i.e. it is the Lie algebra corresponding to 
the Lie group structure on T*G (G being a Lie group with Lie algebra V ) .  

Let us consider the special situation when V is a subspace of codimension one in E .  
That means that U' = E f V is one-dimensional. We can construct a semi-direct product of 
a Poisson structure on W" and a Poisson structure on V*. Because W" is one-dimensional, 
the only Poisson structure on it is zero. Thus, the semi-direct product will be given by 
a linear Poisson structure A V  and a linear map from W into linear vector fields on V *  
corresponding to derivations on V,  but because W is one-dimensional all we need is to 
select a linear vector field Xa such that A is a derivation of the Lie algebra V .  Then the 
extended Poisson bi-vector (15) will have the form 

where y is a linear coordinate on W'. In general, the condition for a bi-vector of the form 
in (16) to be Poisson is stated in the following lemma. 
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Lemma 1. If V is a codimension one subspace of the vector space E and A E End(V), then 
the bi-vector AE = A V  + X A  A a/ay is a Poisson bi-vector iff 

J F Cariiiena et a1 

C O .  (17) 

Proof It follows immediately from the vanishing of the Schouten tensor [AE,  AE] = 0, 
because it reduces to [ A V ,  XA A a/ay] = [AV, XA] A a/ay = 0 and the conclusion follows. 

0 

From a geometrical viewpoint the previous construction, (16), of Poisson bi-vectors 
corresponding to extensions of Abelian one-dimensional Lie algebras, is distinguished 
because of the following argument. 
Lemma 2. Let A be a linear transformation on a vector space E and a E E an arbitrary 
vector. Then, the bi-vector A = XA A X ,  defines a Poisson structure on E* iff a is a null 
eigenvector of A or A can be rewritten as X B  A x b  where b is a null eigenvector of B.  

Proof Because of (3, the Jacobi identity [X, A X,, X A  A X,] = 0, is equivalent to 
Xa A x ,  A X A . ~  = 0. 

Then, if A . a = 0, the bi-vector is Poisson because the previous equation is automatically 
satisfied. 

If A . U = b # 0, then X, A x b  A XA = 0, implies that the vector field Xa lies in the 
linear space spanned by the constant fields X, and Xa. Notice that a and b me parallel i f f  
a is an eigenvector of A with eigenvalue A. In such case defining B = A -,WO, where A'" 
is a projector on the subspace generated by U ,  we obtain the desired result. 

Finally, if a and b are independent, the vector field X A  will be written as 

XA = f x n  + g X b  
with f,  g linear functions on E'. Then, g ( x )  = ( U .  x). for some U E E.  In such case it is 
clear that 

XA A X ,  = ( U ,  X ) x b  A x,. 
The linear vector field (u.x)Xb defines a linear map B on E ,  such that B . a = 0 iff 
( U ,  a )  = 0. Assume now that ( U ,  b) # 0. Notice that if (u ,b)  = 0, then considering the 
linear vector field Xs = ( U ,  x)X, and the constant vector field Xb the conclusion follows. 
Then, redefining the vector a as 

. .  
we have Xi A x b  = X ,  A Xb, and the linear vector field ( U ,  x)Xa defines a linear map B 

0 

Selecting linear coordinates such that X, is a coordinate vector field, say ajax,, our 
on E ,  such that B . a = 0 because ( U .  6)  = 0. 

bi-vector field looks like 
a a  

ax, ax, 
ti-1 

xA A X, = A ~ ~ x , -  A - 
i = I  

where the matrix elements A,,' do not appear on the tensor. Finally, because of lemma 2. 
A . e. = 0, and we obtain that A," = A;I = . . . = = 0. Thus we can choose A to 
have the block form 

A =  (+) 



On the geometry of Lie algebras and Poisson tensors 7433 

Thus, we have proved that in an n-dimensional linear space E ,  

Lemma 3. If the bi-vector field Xa A X, is Poisson, then there exists a subspace V c E 
supplementary to {a) such that A( V) c V, and an adapted linear coordinate system xd on 
E* such that it is written as 

. a  a 
axi ax, 

"-1 

X A  A X ,  = Ai ' x j -  A - 
i.j=I 

As a consequence, monomial linear Poisson tensors will define automatically semi-direct 
extensions of Abelian one-dimensional algebras. This is the main content of the following 
proposition. 

Proposition I. The bi-vector AB = AV + XA A slay represents a semi-direct extension of a 
one-dimensional Abelian Lie algebra by the Lie algebra V if and only if Xa is a derivation 
of A V .  

3.2. The derivation algebra 

We have seen in the previous discussion that any decomposition of AE = A, + X A   AX^ on 
E ,  where E* = V*@(a), A E End(V), defines an extension of the Abelian one-dimensional 
Lie algebra generated by the vector a ,  by the Lie algebra defined on V by A V .  Thus we have 
a new Lie algebra on E associated to the Poisson tensor AE defined by the commutation 
relations 

{ x i , X j ) ~  = C i j k X x  [ X i ,  Y ) E  = Ai j X j .  

In this sense lemma 1 recasts the derivation property of vector fields defining semi-direct 
extensions discussed in the previous paragraphs. In fact a linear map A:  V 3 V defines 
a derivation with respect to the Lie algebra structure described by the Poisson bi-vector 
AV on V if and only if (17) is satisfied, i.e. if the linear vector field defined by the linear 
map is an infinitesimal automorphism of the Poisson structure. These vector fields form 
themselves an algebra, called the derivation algebra of the corresponding Lie algebra, and 
will be denoted by Der(V). Thus there is a correspondence between extensions of the 
particular kind discussed above and Der(V). The derivation algebra Der(V) acts on V, 
defining in this way the semi-direct product Hol(V) = Vx Der(V), called the holomorph 
of V, which in some cases characterizes the Lie algebra V [Sh55]. 

We notice that we could also consider vector fields such that & A  = 0, obtaining in 
this way the inhomogenous derivation algebra. Among all derivations there is an invariant 
subalgebra given by those derivations defined by linear vector fields of the form X, = A@), 
where a! = a!'dxi is a 1-form on V'. For X, to be linear (i.e. of degree zero), a! must be of 
degree 1, therefore a! is going to be exact, a! = d(a!'xi). Then the vector field X, is Poisson 
and is a linear combination of the adjoint vector fields XC, defined in (8). X, = a!'Xc,. 
These derivations are called inner derivations and will be denoted by Int(V). 

There is yet another subalgebra of derivations, given by linear vector fields which are in 
the image of A on some open dense submanifold. Let k be the maximum rank of A, then 
Ak # 0, but Ak+' = 0. Then we will say that a derivation X is parallel if X A Ak = 0 and 
&A = 0 and will be denoted by DeF(V). This derivations are on the image of A on the 
open dense submanifold made up by the union of maximal dimension symplectic leaves of 
the Poisson tensor A, They form an invariant subalgebra of the full derivation algebra and 
contains as an invariant subalgebra the algebra of inner derivations. Qpical derivations of 
this kind are those of the form CX, where C is a linear Casimir function and & A  = 0 



7434 

(we must notice that the vector field X A  that will be introduced later on, (29) and (37) will 
be of this kind). 

J F Cariiiena et a1 

Therefore, we have the following commutative diagram: 

0 0 
J. J. 

Int(V) 2 Int(V) 
1 .1 

0 + Der"(V) + Der(V) + Outr(V) + 0 
L J. .1% 

0 + Out"(V) + Out(V) + OUtT(V) + 0 
L .1 
0 0 

.̂ 

where Out'(V) = Der(V)/DeF(V) and OuP(V) = DeF(V)/Int(V). Any derivation can 
be written, once a splitting of the central vertical sequence has been chosen, as a linear 
combination of inner derivations and outer derivations. 

In the specific cases we are going to consider, it will be clear that elements in Out(V) 
which are not parallel, should be searched among vector fields transverse to the leaves of 
the symplectic foliation of A. Let us discuss the special case when symplectic leaves are 
of dimension equal to the dimension of V, then the only outer derivations are going to be 
in Out"(V). As we mentioned before typical parallel derivations will have the form CX,. 
However, the existence of elements X, parallel and satisfying = 0, is not the end 
of the story because to make up a linear vector field we need a linear Casimir function. 
We can prove that by making the assumption that CX, = A(@) with 0 a linear 1-form we 
have X. = A(@/C) with @IC a smooth function of degree zero. Thus, X, cannot be in the 
image of A. If q5: is the Bow of X,, (#,).A = A implies that #:CO) must be a zero of 
A, therefore, A does not have isolated zeros but a full line. We conclude that when A is 
non-degenerate on an open dense submanifold, a linear vector field that is not in the image 
of A but preserves A will have an integral curve in the zero set of A. If this cannot be 
the solution curve of a linear vector field then there is no outer parallel derivations. The 
structure of the derivation algebra will be discussed elsewhere. 

An interesting illustration of the previous arguments is provided by the 'book algebra' 
in (n + 1)-dimensions. This algebra is defined by the Poisson tensor: 

where I,, is the unit matrix in n-dimensions. The rank of A is 2 except along the 
x,+,-axis, where is zero. Inner derivations are generated by linear Hamiltonian vector 
fields. These are Xi = xia/ax,+l, i = 1 ,..., n, and X,+I = An, with An the 
Liouville vector field in n-dimensions. The symplectic leaves of the Poisson structure 
are two-dimensional half-planes defined by an arbitrary vector and the x,+l-axis, i.e. 
U, = (ha + pen+] I h z 0. p E R, 0 # a E R"), and the points on the x.+,-axis 
(see figure 1). 

It is easy to show that there are no non-constant smooth Casimir functions. Outer parallel 
linear derivations should be of the form f ( x 1 , .  . . ,x,)a/ax,+l, with f a linear function, 
but this implies that f must be zero (no Casimirs). On the contrary there are non-parallel 
outer derivations. They are generated by all h e a r  vector fields of the form X A  with A a 
linear map with Ai+l  = 0 = AI+', i = 1, . . . , n + 1. Thus the algebra of linear derivations 
is (n + 1)n-dimensional and the algebra of outer derivations has dimension nz - 1. 
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Figure 1. Symplectic leaves of the three-dimensional 'book' algebra 

4. Solvable Lie algebras 

The ideas discussed in the previous section can be applied to construct all solvable and 
all nil-potent Lie algebras in a vector space of arbitrary dimension. Solvable Lie algebras 
in a vector space of dimension n + 1 will be constructed using the previously constructed 
solvable Lie algebras in a vector space of dimension n .  In this way we will construct 
recursively families of solvable (and nil-potent) Lie algebras that exahust all of them. The 
algorithm works as follows. 

Let V, be a n-dimensional real vector space. The Poisson structure A: is hivial, 

A: = O .  

Let 0 < j c n, then if Ai is the linear Poisson tensor associated to a solvable Lie algebra 
in V;, and XA,+, is a linear vector field on V, such that the compatibility condition (17) 
is satisfied, i.e. X,++, is a linear derivation of A;, then we define the Poisson bi-vector 
hi;:(Aj+l) on V"+I = V. @ R, by 

a 
ax.+l 

A;:!(A~+~) = A: + x A , + ,  A - . 
In what follows Ai;; will be used to denote,the family of all linear Poisson bi-vectors 
Aj+l ,+l(Aj+I). Notice that a Poisson bi-vector Ai(Aj) on V, constructed using this algorithm 
will have the form 

A ~ ( A ~ )  = A~:;(A~-~) + xA, A - = . . . = x A ,  A - a + X A 1  A - + ' "  
a a 

ax. ax.-j+l ax,-j+z 
a 

+ X A i  A - . 
ax, 

The family AI, Az,. . . , Aj  are linear maps of the sequence of nested linear spaces 
Vn-j c VQ-j+l c . . . c V,. Because of this structure the linear Poisson tensor AL(Aj) 
will be denoted in what follows by &(AI,. . , , Aj), and the corresponding Lie algebra by 
L,(AI,. . . I Aj). 

The bi-vector &(AI, , . . , Ai) represents a solvable Lie algebra. A simple computation 
shows that the derived algebra L.(Al,. . . , Aj)(') = [L.(Al,. . . , Aj), L.(AI,. . . , Aj)] is 
contained in the Lie algebra L I ( A l ,  ..., Aj-I) defined by An-l(A1, ..., Aj-1). But the 
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Lie algebra L " - I ( A I . .  . . , A i - I )  is solvable, thus L , , ( A I , ,  . , , A, ) ( ' )  will be solvable too. In 
the particular case of An(Af ) ,  then the Lie algebra L,,(Al) is such that L n ( A l ) ( 2 )  = 0. 

J F Cariiiena et a1 

For instance, & , ( A , )  are monomial bi-vectors of the form described in lemma 3, i e. 

and so on. Hence a Poisson tensor on the family Ad is a decomposable Poisson tensor with 
i monomial factors. The structure of the families generated by this algorithm is visualized 
in the following diagram 

A? 
J 

J- 

J- 
An-] 

1 
n 

J- J- 
... ... AA A: 
J- .1 1 

where vertical arrows indicate the extension construction described in the algorithm. It 
is important to remark here that because of the nonuniqueness of the decomposition of a 
Poisson tensor, the families A; are not disjoint, in general. However, we can prove the 
following result. 

Proposition 2. If L is a solvable Lie algebra of dimension n with derived series of length 
I ,  then L belongs to the family AL. 

ProoJ n = dim L. It is well known ([Ja62], theorem 14, p 52) that for L solvable there 
exists a chain of solvable ideals L i ,  dim Li = i, such that 

o = L ~ c L l c ' " c L , ~ , c L , = L  

Each couple Li c Li+l defines a situation similar to the one considered in the previous 
section, where the Lie algebra structure is an extension of an Abelian one-dimensional 
algebra Li+l/Li by the (non-Abelian) L, .  Thus because of proposition 1 the Poisson tensor 
defined on L* will be of the form A i  where j will be the length of the derived series of L .  

0 

Corollary I .  The Poisson tensor AL defined by an arbitrary solvable Lie algebra is 
decomposable and it can be written as a sum of as many monomial as the length of the 
derived series of L. 

If A is a nil-potent matrix with A;! representing a nil-potent Lie algebra on W", then 
Ai:; = A; + X A  A a/ax,+l represents a nil-potent Lie algebra on R"+'. In fact, notice 
that in the central series L(n + 1, j + 1)' = [L(n + 1. j + l ) , L ( n  + 1,  j + I)'-'], 
L(n + 1, j + 1)' = L(n + 1, j + l) ,  the cross terms corresponding to the coordinates 
[ x i ,  y]  = Ai ' x j ,  corresponds to powers of A,  thus L(n + 1, j + l)m = 0. 



On the geometry of Lie algebras and Poisson tensors 7437 

The classification problem of solvable algebras, can be addressed looking at the structure 
unveiled by the previous algorithm. Linear isomorphisms preserve the decomposition 
structure of the Poisson tensors. Thus, Poisson tensors in the diagonal A!,, n = 1 ,  2, . . . , 
will be characterized by a single linear map on a vector space of dimension n - 1. Normal 
forms for linear maps are well known and they classify the corresponding solvable Lie 
algebras. The classification of the diagonal A: brings to the stage the characterization 
of pairs of non-commuting linear maps on a vector space of dimension n, problem that 
unfortunately has not been solved yet. In fact, tensors on A: will be of the form 

a a 
ax.-, ax. 

12; = XA A ~ + X s A -  

with A a linear map on (n-Z)-dimensional subspace, B a linear map on a (n  -1)-dimensional 
subspace and satisfying the compatibility condition (17). 

4.1. Lower-dimensional solvable Lie algebras 

We will illustrate the use of the previous algorithm constructing solvable Lie algebra in low 
dimensions. The construction starts in dimension 1, where there is a unique trivial (Abelian) 
Lie algebra AY = 0. 

4.1.1. Dimension 2. 
Poisson bi-vector 

In dimension 2 we construct a Lie algebra structure with associated 

a a a  
ax2 ax, axz 

A;(A) = xn A - = a x l -  A - a ER. 

The family A; contains the trivial Lie algebra (a  = 0). If a # 0 it can be fixed to be 1 
after a reparametrization of the coordinate xz. 

It is clear that the tensor field Ai  is non-degenerate on a dense submanifold (XI # 0) 
with symplectic leaves the half-planes (open two-dimensional submanifolds) 01 = {XI c 01, 
O2 = {xl > 0), and the collection of points ((0, xz)] (See figure 2). 

Figure 2. Symplectic leaves of the two-dimensional Poisson tensor 
A;. 

4.1.2. Dimension 3. We will start constructing the family A i .  Poisson tensors in this 
family will have the form X A  A a / a x , ,  with X A  a linear vector field on W2. Taking A into 
its real canonical Jordan form we will obtain a list of solvable Lie algebras that will exahust 
the classification presented in [Pa76]. 

(i) A = (4 A A 2 ) .  0 .  

with A I A z  # 0. If Alh2 > 0, the Poisson tensor can be brought to the form 
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Figure 3. Symplectic leaves of the Poisson tensor A: with a = I ,  
b = O .  

A;,, = (xla/axl + axza/axz) A a/ax,, a > 0. (The notation ATj is taken from 
[Pa76].) 
If A I A z  < 0, then the Poisson tensor has the form A;,, = (xla/axl +axza/ax,) ~ a / a x , ,  
a < 0. If a = -1, we obtain A;: = A’,+ 

( i i ) A = ( O  A 0  , ) , A # O  

Then the Poisson tensor can be brought to the form A’,’ = (xla/axl +xza/axz)r\a/ax3, 
the book algebra already discussed. 

If A # 0, then the Poisson tensor acquire the form A3.2 = (xla/ax, + (xl +xz)a/8xz) A 

a/ax,. If A = 0, the previous transformation does not exist, and the normal form for 
the Poisson tensor becomes A3,1 = xla/axz ~ a / a x 3 .  The algebra A3.1 is nil-potent and 
plays an important role in the classification of higher-dimensional algebras. 

(iii) A = (2 :z): 

(iv) A = (-” o u  o) ,  U # 0: 

The canonical form of the Poisson tensor is A3.6 = (xla/axz - xza/axl) A a/ax3. 

The canonical form of the Poisson tensor is A;,, = P L ( X ~ ~ / ~ X ~  +xza/axz)Aalax’+A~,s. 

The family A: (see figure 3) will be constructed in W’ using the Lie algebra 12; in Iw2. 

(v) A = ( !u i ) ,  PU # 0: 

We get 

a 
ax3 

A;(A) = A : + x ~  A - 

where X A  = allxla/ax1 + alzxla/axz + azlxza/axl + azzxza/axz, is a derivation of hi, 
i.e. 

&:,,Ai=O. 

Because of the discussion in subsection 3.2, we conclude that all derivations of hi are 
inner. In fact, solving the previous equation we obtain 

X n  = x I  (a& +b&) a , b  E Iw 
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and X A  = -bXi + aXz,  where XI,  X z  are the Poisson vector fields with Hamiltonians X I  

and XZ. respectively. Thus, 
a a  a a 

axl axz A : = ~ l - A - + x l  

The Poisson tensors in the family A: given by (20) are degenerate, with rank 2 if 
X I  # 0, and with a linear Casimir function 

C = bxl - ~ X Z  + ~ 3 .  

Symplectic leaves of this family are the planes C = constant (see figure 3). Inner derivations 
are generated by the Poisson vector fields 

a a a a a a 
axz ax3 ax, ax ,  axl axz 

X I  = x , - + + x l -  X z = b x l - - x l -  X 3  = -ax,- - bxl- (21) 

and the image of A; is spanned by the vector fields X I ,  X z ,  X 3 .  
The discussion in subsection 3.2 allows as to conclude that there is an outer derivation 

of the form C X ,  where X.  is a automorphism of hi. The condition .CxaA: = 0 implies 
that X ,  has the form oralax, + pa/ax,. Then a generic derivation will have the form 

X A  = m X l  + n X z + p X 3 + ( b x 1 - ~ x Z + x 3 )  a-+@- ( a 1 3 )  
Notice that a linear change of coordinates on R2 allows to choose b = 0, and after a 
rescaling of x3 we can take a = 1. This solvable Lie algebra corresponds again to the 
nil-potent Lie algebra A ~ , I .  

4.1.3. Dimension 4. We shall start the construction of four-dimensional solvable Lie 
algebras by computing the family A:. The Poisson tensors in this family have the form 

a 
ax4 

A;(A) = x,, A - 
with A a linear map on R3. We can construct the following families of Poisson tensors 
attending to real Jordan normal forms for A. 

(i) A = ( :  A2 0 0  0 ) :  

0 0 13 
If AlhzAa # 0, then the Poisson tensor can be taken into the normal form A;:: = 
(x la/axl  + axza/axz + bx3a/ax,) A a/ax4. If hl = 0, the canonical form is then 

This tensor can be taken into the form A;,? = ( Q X ~ ~ / ~ X ~  + (xl +xz)a/axz+x3a/ax3) A 

Then &ter rescahg we obtain the canonical form A4.4 = ( ( X I  + xl)a/axl + ( X Z  + 
x3)a/axzx3a/ax3) A a/ax4. If 1 = 0, then the canonical form is = (xza/axl  + 
x,a/axZ) A a/ax4. 
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( i v ) A = ( k  k 0 0  U ) :  

0 -!J f i  

The corresponding Poisson tensor defines the family A:;:. 

To construct the family A:, we must compute the derivations of the Lie algebras in the 
family A:. For instance, if we compute the derivations of the Lie algebra A,,,, we obtain 
the general form 

A = (  U + B  : E Y 1 )  
where we identify a two-dimensional subalgebra of inner derivations YXI  a/ax, + 6x1 a/ax,, 
a two-dimensional subspace of parallel outer derivations pxza/ax3 + crx3a/aXZ, and a two- 
dimensional subspace of (nonparallel) outer derivations (01 + B)xla/ax, + ax ,a /ax ,  + 
gx3a/ax3 (see also figure 4). 

Figure 4. Symplectic leaves of the nil-patent Lie algebra A 3 . l .  

The list of canonical forms corresponding to these derivations are given by: 

LY+B 0 0 
( 9  A = (  : ; ; ) , P # O :  

Then, after rescaling, the canonical form is given by A& = ( ( l + a ) x ~ a / a x ~  +x2a/ax2+ 
ax3a/ax,) A a/ax4. 

( i i ) A = (  ru+B i ; 0 ;),01#0: 0 

( b "  1:) 
The canonical form is now given by A:,, = (0x1  a/axl + (XZ + x,)a/axz + x,a/ax, )  A 
a/ax4. If a = 2, we obtain AA.*. 

( i i i )A= 0 01 p ,01#0 

If p = 1 = - U ,  we obtain the Poisson tensor A:,ll = (201xla/ax1+ (01x2 - x 3 ) a / a x ~  + 
(x2 + a x 3 ) a / a x 3 )  A a/ax4. If 01 = 0, we get A4,,,, which is the well known oscillator 
algebra. 

Finally we should mention that extending the book algebra A3,3 by the derivation 
x l a / a x *  - xza/axl, we get another element on the family Ai, A4.12 = A3.3 + ( x l a / a x z  - 
x 2 a / a x l )  A a/ax,. These families reproduce the list of solvable algebras in (Pa761. 
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5. Liouville geometry of Poisson manifolds 

51. Poisson-Liouville geometry 

The choice of a volume form Qo on the vector space L*, introduces an additional structure 
in the analysis of the Poisson tensor AL associated to the Lie algebra L .  In fact the situation 
is more general, and it is interesting to first consider the situation on an arbitrary orientable 
manifold P .  If the manifold P is orientable, a volume form Q can be chosen and a 
isomorphism Q: V H qv = i v Q  is defined among the algebra of multivector fields V ( P )  
and the algebra of forms /',(P). Notice that the image of an homogeneous multivector field 
V of degree k is a form q~ of degree dim P - k [Ko85]. This isomorphism depends on 
the choice of the volume form; if Q is replaced by f Q  the corresponding isomorphisms are 
related by WL = f WL,. We will call Q the Liouville form of the theory. 

If (P. A) is a Poisson structure, a simple computation shows that 

i , n  = d j  A i A Q  (22) 

for any Poisson vector field Xf = -A(df). Then. if B is a closed 1-form defining the 
locally Poisson vector field Xs = -A@), using (22) it is easy to show that 

ixeQ = 0 A Q A .  (23) 

It is important to remark that locally Poisson vector fields X, need not be Liouville locally, 
i.e. divergenceless, with respect to the Liouville form Q (see [Ma81, Tag41 for a thorough 
discussion on Nambu dynamics). In fact a simple computation shows that 

LxoS2=d(ix,S2) =d(BAiAQ) = - 6 A d ( i ~ C 2 ) = 4 A d Y ~ .  

Thus, locally Poisson vector fields with respect to A will be locally Liouville with respect 
to Q iff d q A  = 0. 

Defvlition 2. A couple (A, Q), where A is a Poisson bi-vector and Q a volume form on the 
manifold P will be called a Poisson-Liouville structure if d(iAQ) = 0. 

Proposition 3. If L is a perfect Lie algebra, i.e. [ L ,  L ]  = L,  then (AL,  GO) defines a 
Poisson-Liouville structure on L'. 

Prooj Let Xf be an arbitrary linear Poisson vector field on L', i.e. f is a linear function 
on L'. Then, it is clear that div(Xf) is constant because 

&,Qo = div(X,)Qo 

and div(X,) must be of degree zero. Then, 

Gx,.x,IQo = LX,(Wx,) Qo) - &(div(Xf) Qd = 0 

But [ L ,  L ]  = L by assumption and [Xf, X,] = X,f,,tr, thus any linear Poisson vector field 
Xh will be of the form [Xf, X,] for some linear f ,  g, and the conclusion follows. 0 

Perfect Lie algebras form a subclass of Poisson-Liouville structures. We will try to 
understand the structure of Poisson tensors according to this property, i.e. we will try to 
find if it is possible to decompose a Poisson tensor in a part which is compatible with a 
Liouville structure and a part. easy to characterize, which is not. We will proceed performing 
the analysis in a general background in order to make some of the constructions more 
transparent. 
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First of all it is relevant to notice that the differential complex defined on the algebra of 
forms by the exterior differential d can be transported to the algebra of multivector fields 
V ( P )  by means of W as 

ul(D(V)) = dul(V) (24) 
i.e. D = ul-' o d o *. It is clear that D2 = 0 but D is not a derivation on the algebra of 
multivector fields ( V ( P ) ,  A). In fact, the following formula is satisfied [Gr93, Ko851: 

(25) 
for U E Vk(P), V E V ( P ) .  The homology operator D will be called the divergence 
operator. 

D(U A V )  = D(U) A V + ( - l ) k U  A D(V) + [U, VI  

Chosing a bi-vector A, from (25) we obtain 
D(A A A)  - 2A A D ( A )  = [A,  A] (26) 

D(A2) = 2A A D(A) (27) 

2iAdqA = d\lrAi. (28) 

thus, A defines a Poisson structure iff 

or, equivalently, 

Sufficient conditions for the Jacobi identity, (27) or (28), are D(A) = 0 and D(Az) = 0. 
Notice that D(A) = 0 is equivalent to (A, Q) to define a Poisson-Liouville structure on 
P .  We will also say in this situation that the Poisson bracket defined by A, is Q-closed or 
closed for short. Similarly, A will be said to be exact if 

If (A, Q) is a Poisson-Liouville structure, and Xf is a Poisson vector field with respect 
to A, the generating (n - 2)-form with respect to the Liouville form is given by f *A, in 
fact, 

is exact. 

d(f'DA) = df A 'PA = Lx,51. 

In this sense, the geometry of Poisson brackets which are Liouville with respect to some 
volume form can be studied from the dual setting of Liouville structures, i.e. in the realm 
of forms. Questions concerning Poisson vector fields can be translated to Liouville vector 
fields and so on. 

If we are given a Poisson bi-vector A, and we choose an arbitrary volume form 51, any 
other volume form Q' will be related to the last one by a nowhere vanishing function f, i.e. 
a'= fa. Thus, i A Q '  = iAfa = fiAQ and, d(iAi-2') = dfiAn+fd(iAQ). Unfortunately, 
the equation 

df A i A Q  + fd(ihQ) = 0 

has no solution for f, in general. 
Again, the decomposition problem outlined at the beginning of this paragraph, can be 

rephrased in this context as follows: given A and 52 we will be looking for a decomposition 
of A in a D-closed part, 120, and a non-closed part, i.e. a part Ao which is compatible with 
the LiouviUe structure, and that is responsible for the non-closedness of the Poisson bracket. 

In the following paragraphs we will collect some results that will be useful in finding 
an answer to this decomposition problem. Given *A, define the vector field X A  by 
ix,Q = d'@A or, in other words, 

X A  = D ( A ) .  (29) 

ix,d*A = 0 (30) 

Then, 
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and it follows easily that 
D(XA) = 0 .  

It is simply to show that ixAW, is exact. In fact, 
i x , ' P ~  = i x , i ~ a  = i A i x , a  = iAdWA 

and using the Jacobi identity, (28). we obtain 
1 ix,'P'n = Id'?Al. 

We conclude, 

Lemma 4. Cx,WA = 0. 

Proof: We have to compute 

4, WA = ix., dYA f d(ix, *A) . 
But from (30) the first term on the right-hand side of the previous equation vanishes, and 

0 because of (32), the second term in the RHS vanishes equally. 

It is evident from the definition of X A  that it is a Liouville vector field 

c x x , a = o .  (33) 
It is also simple to verify, that X A  is a derivation. 
Lemma 5. ExA A = 0. 
Proof: In fact 

L x n i ~ a  = W ( & , l \ ) f i ~ & ~ a  = W(LxAA) 

but from lemma 4, we get that the left-hand side in the previous formula is zero and the 
result follows. 0 

5.2. Decomposable Poisson structures 

The results in the previous section are general for orientable Poisson manifolds. In this 
section we will introduce new objects which do not necessarily exist on arbitrary Poisson 
manifolds. 
Defulition 3. We will say that the Poisson tensor A of the Poisson manifold P is a -  
decomposable if it is closed or, if dWA # 0, there exists a closed 1-form 8 such that 

(34) 
For an arbitrary A, 8 will exist only on a dense open submanifold of P .  In what follows 

From the definition of X A  we will obtain, 

8 A dWA = Q .  

we will assume that 8 is defined on the whole space P. 

dW, i x , a  ix,(8 A dqA) = ( X A ,  8 )  d'PA 

where we have used (30). Thus, 

( X A , e ) = l .  (35) 
Even if the 1-form 8 exists, it is not uniquely defined. In fact, if 8' is another closed I-form 
satisfying (34) it is clear that the closed I-form B = 8' - 8 is a constant of the motion for 
Xi,. In particular if B = d f, then X A  (f) = 0. 

The locally Poisson vector field X B  = -A@) satisfies the formulae expressed in the 
following lemmas. 
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Lemma 6. Cx00 = 0. 

0 
Proof: A direct computation shows that 

Lemma 7. Cx8R = -a, 
Proof: Again, computing directly the Lie derivative we get 

LxuR = d(ix,S) = d(O A qA) = -0 ~ d q ~  = -8 , l iXAR = -(XA,O)Q = -a 

&,e = ix,de t d(ix,B) = d(-iACs)e) = -dA(e, e )  = 0 .  

where we have made use of the closedness of 0 and (35). a 
Lemma 8. [X,, XA] = 0. 

Prooj 

i[xh,x$ = CxAix8R -ix,Cxx,Q = A IVA) 

where we have used (33). Then, 

i[xA,xo]S = LxA0 A q,j + 0 A c x x , q ~  = d(ix,0) A = 0 

where we have used lemma 4 and (35). 

Finally, we notice that 

Lemma 9. D ( X 6 )  = -1. 

Proof Clearly, 

io(xo)R = dq,yo = d(O A *A) = -0 A dQA . 
But 0 A ixAQ = (XA,  0)Q = R, and the conclusion follows. 

0 

0 

5.3. Decomposition theorem 

Theorem I. Let (P. A) be a Poisson manifold with Liouville form Q. If A is R- 
decomposable it has a decomposition 

h = A o + X a A X A  

where A0 is D-closed, and D(X8 A XA) = -XA. 

Proof: Let us compute directly D(A0) .  We obtain 

D(Ao) = D(A) - D(Xe A XA) = XA - 1x0, X A ]  + D(XS)XA - D(Xn)Xs 

but because of lemmas 8 and 9, we get, 

D(A0) = X A  - XA = 0 

then, A0 is D-closed. 

Because lemma 8, it is simple to show that Xs A X A  defines a Poisson bracket. In fact 

1x0 A XA, xe A XA] = 2x8 A X,$ A [XS, XA] = 0. 

The compatibility of A0 and XS A XA is guaranteed by LxoA = 0 and lemmas 5 and 
8. In fact, because XS is locally Poisson, 

0 
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Finally, we should mention that the locally Poisson vector field corresponding to 0 with 

(36) 
We will apply the previous results to the linear Poisson tensor AI. defined by a Lie 

algebra L. First we must notice that W A ~  will be homogeneous of degree n - 1 ,  where n is 
the dimension of L*. Hence X A ~  will be a constant vector field, i.e. of degree -1. In fact, 
a short computation shows that 

respect to the Poisson structure A0 is zero, 

A,,(B) = I\(@) - (x, A x,)(e) = -x, + x, = 0. 

a 
axi X A ~  = (-1)”TrCi -. (37) 

Notice that if L is unimodular A L  is Poisson-Liouville. 

Proposition 4. The Poisson tensor AI. associated with a Lie algebra L. is Poisson-Liouville 
iff Poisson vector fields associated with linear functions are divergenceless. 

Proof. The necessity is obvious from the definition. On the contrary, if df A dQl, = 0, for 
0 

Theorem 2. Every Lie algebra defines a Poisson tensor AI., which can be decomposed as 

We can state first the following fact. 

any linear function then d\llA = 0, and A L  is Poisson-Liouville. 

AI. = Ao + x e  A X n L  
where A0 is a Poisson-Liouville tensor. 

Proof. Because lYhL is homogeneous of degree n - 1, then dWhL is a (n - 1)-form 
homogeneous of degree n - 1. That implies that d q A L  has the general form 

dqn,  = a, ,... in.&iL A . . . A b i n - ,  

with ai ,... in., constants. It this form is non-zero, it implies that for some i l ,  . . , , & - I ,  the 
previous coefficient does not vanish. Take 0 = a,;,!,in-,dxi with j not in the list il, . . . , in - , .  
Then (L*,  AL)  is Q-decomposable in the sense of definition 3 and we apply theorem 1. 0 

The 1-form 0 is linear, C A ~  = 0, but because it is closed, it must be exact as shown 
in the proof before. Thus the vector field X s  is linear, and consequently it defines a linear 
map A, X s  = X a .  It is clear from the definition that D(Xa) = TI A. Thus lemma 9 implies 
that TrA = -1. In fact, 

Notice that it is enough to have Tr A # 0 because we can always rescale the coordinates to 
obtain the desired value for Tr A. 

6. Semi-simple Lie algebras 

We have shown that semi-simple Lie algebras are Poisson-Liouville. The extension 
procedure discussed in section 3 will tell us how to construct Poisson tensors corresponding 
to semi-simple Lie algebras out of simple ones. Thus, we will concentrate our attention on 
linear Poisson tensors corresponding to simple Lie algebras. 

Notice that a function f E Cm(L*) is in the centre iff (f, h ) ~ .  = 0 for every h, but this 
implies that AL(df Adh) = 0, i.e. df is in the kernel of AL,  or equivalently X, = 0. Thus, 
because of (22) f is a Casimir for (,, .)L iff df A qAL = 0. More, generally, a Casimir 
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I-form [Y will be any I-form such that CY A 'JJhr = 0. Of course, ix,a = 0 for any function 
h .  Because of the homomorphism property (7), when the symplectic leaves of A L  have 
codimension one, (Y has an integrating factor, i.e. locally [Y is associated with a Casimir 
function. The family of forms such that i,A = 0 constitute a differential ideal generated 
by local Casimir functions. 

It is clear that for some Lie algebras, in addition to an invariant volume, there is also an 
invariant pseudometric tensor defined on L', say g = g'jdxi @ dx j ,  with respect to Poisson 
vector fields associated with linear functions on L'. 

Defutition 4. We shall say that A L  is dynamically compatible with a pseudometric tensor g 
if Poisson vector fields associated with linear functions are Killing vector fields for g. 

For instance, Abelian Lie algebras are dynamically compatible with any metric tensor. 

Proposition 5. Central extensions of simple Lie algebras admit compatible metric tensors. 

Proox If L is a simple Lie algebra with Poisson structure A L  a central extension by Rk 
will be described by a form 

J F Cariiiena et a1 

= dyl A .. . Adyk A ('PA +c) 

where c represents the (n - 2)-form defined by the cocycle defining the extension, and 
Ql, . . . , Yk) are linear coordinates in Rk. The volume form we are choosing on R' L' is 
S2, = dyl A . .  .AdykAdXI A . .  .Ad&. If g L  = g'jdxi@dxj corresponds to the Cartan-Killing 
metric tensor on L we have a compatible metric tensor given by 

2~ = f n * g L  + A"dym 61 dya 

with dAU@ A GL = 0, df A GL = 0, f + 0, dei AnB # 0, and n: Rk @ L" -P L' the natural 

It should be noticed that when k = 0 we have Compatible metric tensors for a simple 
Lie algebra by considering the Cartan-Killing metric and multiplying it by any non-zero 
function of the Casimirs. When a compatible pseudometric tensor is available we can 
construct a scalar product on the tensor algebra and we can construct Casimir functions. 
Therefore (A, A )  will be an invariant function. Then d(A, A )  is a Casimir 1-form, and thus 

projection. 0 

d(A, A )  A 'JJA = O .  

In general, for any higher power (A A A, A A A),  . . . , (A', A'), we get Casimir functions. 
By adapting the proof given by Racah [Ra50] we can show that these generate all 
Casimir functions. In addition, for any invariant tensor T we can construct ( T ,  T )  which 
is an invariant function (this provides a method for computing invariants alternative to 
[Pa76, Pe941). 

Proposition 6. Any AL dynamically compatible with a covariant pseudometric tensor g of 
degree-2 (or contravariant of degree-2) is a subalgebra of a simple Lie algebra. 

Proof. If g = g'j dx; @ dxj, then linear transformations preserving g are elements of 
m(n, k ) .  Therefore, X, = -AL(df) are going to be elements in sc(n, k ) .  Because they 

0 

Notice that the integral submanifolds of Im AL are contained into orbits of subalgebras 
of so(n, k )  in L'. 

In addition to the map 'JJ it is clear that we can construct a Hodge star operator 
*: f l - k ( L * )  + /\'(L*) associated to g. The 2-form *YhL is the 2-form that defines 
a 2-form symplectic on the symplectic leaves of A L  (coadjoint orbits on L*), It should be 

close on a Lie algebra, they will close a subalgebra of m(n ,  k ) .  
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noticed that * Y A ~  need not be closed on L'. It is only closed along the leaves, i.e. d l A  = 0 
and, 

d(*Yn,)(Xj, x,, xh) = 0 
for any choice of functions f, g, h on L', 

7. Classification of low-dimensional real Lie algebras 

We will consider the classification problem of Lie algebras in low dimensions. We will 
discuss the classification up to four dimensions to indicate how the ideas discussed along 
the paper apply in these simple situations. Because of the decompostion theorem for Lie 
algebras, theorem 2, it suffices to look for closed Lie algebras and extensions of the form 
discussed in section 3, and we can use the machinery developed in subsection 5.2. 

7.1. Dimension 2 

Let A be a Poisson tensor of degree - 1 in a two-dimensional space with linear coordinates 
X I .  XZ, and volume form chosen to be no = dxl ~ d x z ,  then YA is a linear function, and if A 
is closed, dqA = 0 implies that YA = 0 too. Thus A = 0, and the only Liouville-Poisson 
algebras in two dimensions are Abelian. 

If A is now a general bi-vector, it must be a monomial of the form 

where X A  = axla/axl. Computing YA we get 

(that will be closed only if a = 0). If a # 0, rescaling the coordinates we can choose it 
such that Tr A = - 1. and we obtain the algebra [el, ez] = -el .  In this case A0 = 0. 

YA = ax1 

7.2. Dimension 3, 

We shall now consider a linear bi-vector A in a three-dimensional space with coordinates 
x[,xz, x3 and volume form no = dxl A dxz A d x 3 .  Then YA is a 1-form of degree 2 
and CAYA = ~ Y A .  Furthermore, A' = 0 in dimension 3, and then if dYA = 0, A 
automatically defines a Lie algebra structure. Consequently, all closed 1-forms of degree 
2 define Liouville-Poisson algebras, hence all 1-forms admitting a local integrating factor 
define a Lie algebra. We should mention of course that the Lie bracket with Poisson tensor 
A may reduce to Ao, i.e. D ( A )  = 0 from the start. 

Let A be a Poisson tensor of degree -1 with corresponding 1-form YA of degree 2, 

= A i j X ,  dXJ 

that can be decomposed as 
YA = I (A. .  2 ' J  - A..)x.d.~j J I  1 + f ( A j j  + Ajj)xj dxj . 

Defining ay = d j k A i j  we get, 

Because dYA = akEiJk dxi A ~ x ~ ,  we conclude that XA = a'a/axk = X,. The 1-form B can 
be chosen to be d x g  and X, = ajax3, then 

YA = ?a I k  ~ijk(xj dxj - xj dxi) + id(Aijxixj). 

YA = i ( ~ ~ d Y ~ - ~ z d x ] ) + f d ( A j j ~ i X J )  1 
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and imposing WA A d*,$ = 0 we find i, j E ( I ,  Z), 

J F Curiiiena et a1 

Therefore either, 

Y A = ~ ( x I ~ x ~ - x z ~ x ~ ) + I ~ ( A ~ ~ x ~ x ~ )  i , j e { l , Z }  

or, 

YA = fd(Aijxixj). 

Because Ai j  is symmetric in two dimensions, we can bring it to normal form by using 
a rotation matrix which preserves the form of X I  dx? - xz dxl, we find 

'PA = ~ ( r i d ~ - y z d y i ) + f d ( a y : + b y , 2 )  

or, 

W A  = id(uly: +~zy :  + ~ 3 y , Z ) .  

The algebra A3.l is closed with associated 1-form -dx:. The algebra is not 
closed and its associated 2-form is 2(x!dxz - xzdxl) - dx:. The algebra A3,3 is not closed 
and has the form XI dxz - xzdxi. The algebra As.4 is closed with YA = d(xix2). On 
the contrary the algebras A:,5 are not closed with YA = XI dxz - axzdxl. The algebra 
A3.6 is closed with form -id(.: + x;) .  The algebra A;,, is not closed with 1-form 
a(xldx2 - xzdx~) - fd(xf + x i ) .  For the semi-simple algebras A3.8, A3,9, the respective 
forms -d(x; + x l x 3 )  and -fd(x: + x: + x i )  are closed. 

7.3. Dimension 4. 

We shall consider now four-dimensional Lie algebras. The linear coordinates will be denoted 
by X I ,  x ~ ,  x3, xq with volume form S2, = dxl A dxz A dx3 A dyq. 

A11 simple algebras have only inner derivations, therefore the extension procedure with 
them provides only central extensions. It is also easy to show that Poisson-Liouville algebras 
in four dimensions are necessarily of the type Iuh A = 0, with dqA = 0. From it we 
have Y A  = dAn.  In  fact, if D(A) = 0, this implies that D(A*) = 0, or equivalently, 
dWha = 0. But, q,,: is a function of degree 2, whose differential vanishes, thus it must be 
constant, then zero. But then, 0 = Wh2 that implies !UA A YA = 0. 

By adapting an argument from electromagnetism it is not difficult to show that either 
A A  = Ai(xl,xz,x3)dxi, where i E (1 ,2 ,3)  or A A  = f(xl,xz,x3,~q)&q, with A,  and f 
quadratic functions of their arguments. 

We notice that in the second case we have df A dxq = Yhr therefore the associated 
Lie algebra L cannot be perfect, i.e. it cannot satisfy [ L , L ]  = L.  In the first case 
A A  A QA = Ah A dAA = 0, i.e. An is a Casimir 1-form, The associated bi-vector field has 
the form XE A 88x4 with 

therefore again the algebra cannot be perfect. Thus the four-dimensional case is absorbed 
in  the listing of solvable algebras discussed already in section 4. 

For higher dimensions the analysis becomes more involved but it is still feasible. For 
instance, it is quite easy to find the results by Turkowsky [Tu881 and to generalize to 
solvable Lie algebras the analysis of 

[Mu631 for six-dimensional nil-potent algebras. 
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